

On power analyses for individual site impacts in multisite trials

Jonathan Che & Luke Miratrix

A multisite trial is a bunch of single-site trials

. . .

3

We could separately estimate effects at each site, but...

• • •

Multilevel models (MLMs) produce partially pooled effect estimates

Multilevel models (MLMs) produce partially pooled effect estimates

Multilevel models (MLMs) produce partially pooled effect estimates

What do we want from our MLM?

- 1. Estimates of τ , σ^2
- 2. Estimates of $\{\tau_1, \dots, \tau_J\}$

How should we power a multisite trial to estimate τ_i ?

Simulation-based power analysis pipeline

MLMs increase power at fixed τ_i values, but...

...MLMs don't have appropriate coverage for fixed τ_j values

MLMs have appropriate coverage across random τ_j values

 $\tau_j \sim N(\tau, \sigma^2)$

Example: MLMs don't have appropriate coverage for fixed τ_j

Example: MLMs don't have appropriate coverage for fixed τ_j

MLMs have appropriate coverage at estimated $\hat{\tau}_i$ values

Example: MLMs have appropriate coverage at estimated $\hat{\tau}_i$

Example: MLMs have appropriate coverage at estimated $\hat{\tau}_i$

Example: MLMs have appropriate coverage at estimated $\hat{\tau}_i$

	Multilevel model interval estimates	Single-site interval estimates
Width	Narrower	Wider
Unconditional coverage	\checkmark	\checkmark
Coverage cond. on $\tau_j = c$	Poor for extreme τ_j	\checkmark
Coverage cond. on $\hat{\tau}_j = c$	\checkmark	Poor for extreme $\hat{\tau}_j$

Example "power" analysis

Method 1.00 ● *J* = 25 Average margin of error MLM \bigcirc *ICC* = 0.2 0.75 Single \bullet $\tau = 0.2$ 0.50 • $\sigma^2 = 0.1, 0.2, 0.3$ σ^2 value • $\sigma_y^2 = 0.8$ 0.1 0.25 0.2 $\bullet \rho = 0$ 0.3 0.00 • varying n_i 50 100 150 200 0 Average site size

Contractions Contraction Contractico Contractico Contractico Contractico Contractico Contr

Contact:

🖂 jche@g.harvard.edu

 $[\tau_j \sim N(0.2, 0.2^2)]$

MLMs have appropriate coverage across random τ_j values

